2 research outputs found

    Employing data fusion & diversity in the applications of adaptive signal processing

    Get PDF
    The paradigm of adaptive signal processing is a simple yet powerful method for the class of system identification problems. The classical approaches consider standard one-dimensional signals whereby the model can be formulated by flat-view matrix/vector framework. Nevertheless, the rapidly increasing availability of large-scale multisensor/multinode measurement technology has render no longer sufficient the traditional way of representing the data. To this end, the author, who from this point onward shall be referred to as `we', `us', and `our' to signify the author myself and other supporting contributors i.e. my supervisor, my colleagues and other overseas academics specializing in the specific pieces of research endeavor throughout this thesis, has applied the adaptive filtering framework to problems that employ the techniques of data diversity and fusion which includes quaternions, tensors and graphs. At the first glance, all these structures share one common important feature: invertible isomorphism. In other words, they are algebraically one-to-one related in real vector space. Furthermore, it is our continual course of research that affords a segue of all these three data types. Firstly, we proposed novel quaternion-valued adaptive algorithms named the n-moment widely linear quaternion least mean squares (WL-QLMS) and c-moment WL-LMS. Both are as fast as the recursive-least-squares method but more numerically robust thanks to the lack of matrix inversion. Secondly, the adaptive filtering method is applied to a more complex task: the online tensor dictionary learning named online multilinear dictionary learning (OMDL). The OMDL is partly inspired by the derivation of the c-moment WL-LMS due to its parsimonious formulae. In addition, the sequential higher-order compressed sensing (HO-CS) is also developed to couple with the OMDL to maximally utilize the learned dictionary for the best possible compression. Lastly, we consider graph random processes which actually are multivariate random processes with spatiotemporal (or vertex-time) relationship. Similar to tensor dictionary, one of the main challenges in graph signal processing is sparsity constraint in the graph topology, a challenging issue for online methods. We introduced a novel splitting gradient projection into this adaptive graph filtering to successfully achieve sparse topology. Extensive experiments were conducted to support the analysis of all the algorithms proposed in this thesis, as well as pointing out potentials, limitations and as-yet-unaddressed issues in these research endeavor.Open Acces
    corecore